
17
Polynomial arithmetic and applications

In this chapter, we study algorithms for performing arithmetic on polynomials.
Initially, we shall adopt a very general point of view, discussing polynomials whose
coefficients lie in an arbitrary ring R, and then specialize to the case where the
coefficient ring is a field F .

There are many similarities between arithmetic in Z and in R[X ], and the simi-
larities between Z and F [X ] run even deeper. Many of the algorithms we discuss
in this chapter are quite similar to the corresponding algorithms for integers.

As we did in Chapter 14 for matrices, we shall treat R as an “abstract data
type,” and measure the complexity of algorithms for polynomials over a ring R by
counting “operations in R.”

17.1 Basic arithmetic
Throughout this section, R denotes a non-trivial ring.

For computational purposes, we shall assume that a polynomial g =
∑k−1
i=0 aiX

i ∈
R[X ] is represented as a coefficient vector (a0, a1, . . . , ak−1). Further, when g is
non-zero, the coefficient ak−1 should be non-zero.

The basic algorithms for addition, subtraction, multiplication, and division of
polynomials are quite straightforward adaptations of the corresponding algorithms
for integers. In fact, because of the lack of “carries,” these algorithms are actually
much simpler in the polynomial case. We briefly discuss these algorithms here—
analogous to our treatment of integer arithmetic, we do not discuss the details of
“stripping” leading zero coefficients.

For addition and subtraction, all we need to do is to add or subtract coefficient
vectors.

For multiplication, let g =
∑k−1
i=0 aiX

i ∈ R[X ] and h =
∑`−1
i=0 biX

i ∈ R[X ],
where k ≥ 1 and ` ≥ 1. The product f := g · h is of the form f =

∑k+`−2
i=0 ciX

i, the
coefficients of which can be computed using O(k`) operations in R as follows:

465



466 Polynomial arithmetic and applications

for i← 0 to k + ` − 2 do ci ← 0
for i← 0 to k − 1 do

for j ← 0 to ` − 1 do
ci+j ← ci+j + ai · bj

For division, let g =
∑k−1
i=0 aiX

i ∈ R[X ] and h =
∑`−1
i=0 biX

i ∈ R[X ], where
b`−1 ∈ R∗. We want to compute polynomials q, r ∈ R[X ] such that g = hq + r,
where deg(r) < `− 1. If k < `, we can simply set q ← 0 and r ← g; otherwise, we
can compute q and r using O(` · (k − ` + 1)) operations in R using the following
algorithm:

t← b−1
`−1 ∈ R

for i← 0 to k − 1 do ri ← ai
for i← k − ` down to 0 do

qi ← t · ri+`−1

for j ← 0 to ` − 1 do
ri+j ← ri+j − qi · bj

q ←
∑k−`
i=0 qiX

i, r ←
∑`−2
i=0 riX

i

With these simple algorithms, we obtain the polynomial analog of Theorem 3.3.
Let us define the length of g ∈ R[X ], denoted len(g), to be the length of its coeffi-
cient vector; more precisely, we define

len(g) :=
{

deg(g) + 1 if g 6= 0,
1 if g = 0.

Sometimes (but not always) it is clearer and more convenient to state the running
times of algorithms in terms of the length, rather than the degree, of a polynomial
(the latter has the inconvenient habit of taking on the value 0, or worse, −∞).

Theorem 17.1. Let g and h be arbitrary polynomials in R[X ].
(i) We can compute g ± h with O(len(g) + len(h)) operations in R.

(ii) We can compute g · h with O(len(g) len(h)) operations in R.
(iii) If lc(h) ∈ R∗, we can compute q, r ∈ R[X ] such that g = hq + r and

deg(r) < deg(h) with O(len(h) len(q)) operations in R.

Analogous to algorithms for modular integer arithmetic, we can also do arith-
metic in the residue class ring R[X ]/(f ), where f ∈ R[X ] is a polynomial with
lc(f ) ∈ R∗. For each α ∈ R[X ]/(f ), there exists a unique polynomial g ∈ R[X ]
with deg(g) < deg(f ) and α = [g]f ; we call this polynomial g the canonical
representative of α, and denote it by rep(α). For computational purposes, we
represent elements of R[X ]/(f ) by their canonical representatives.



17.1 Basic arithmetic 467

With this representation, addition and subtraction inR[X ]/(f ) can be performed
using O(len(f )) operations in R, while multiplication takes O(len(f )2) operations
in R.

The repeated-squaring algorithm for computing powers works equally well in
this setting: given α ∈ R[X ]/(f ) and a non-negative exponent e, we can compute
αe using O(len(e)) multiplications in R[X ]/(f ), for a total of O(len(e) len(f )2)
operations in R.

EXERCISE 17.1. State and re-work the polynomial analogs of Exercises 3.26–
3.28.

EXERCISE 17.2. Given a polynomial g ∈ R[X ] and an element x ∈ R, a particu-
larly elegant and efficient way of computing g(x) is called Horner’s rule. Suppose
g =

∑k−1
i=0 aiX

i, where k ≥ 0 and ai ∈ R for i = 0, . . . , k − 1. Horner’s rule
computes g(x) as follows:

y ← 0R
for i← k − 1 down to 0 do

y ← yx + ai
output y

Show that this algorithm correctly computes g(x) using k multiplications in R and
k additions in R.

EXERCISE 17.3. Let f ∈ R[X ] be a polynomial of degree ` > 0 with lc(f ) ∈ R∗,
and let E := R[X ]/(f ). Suppose that in addition to f , we are given a polynomial
g ∈ R[X ] of degree less than k and an element α ∈ E, and we want to compute
g(α) ∈ E. This is called the modular composition problem.

(a) Show that a straightforward application of Horner’s rule yields an algo-
rithm that uses O(k`2) operations in R, and requires space for storing O(`)
elements of R.

(b) Show how to compute g(α) using just O(k` + k1/2`2) operations in R, at
the expense of requiring space for storing O(k1/2`) elements of R. Hint:
first compute a table of powers 1, α, . . . , αm, for m ≈ k1/2.

EXERCISE 17.4. Given polynomials g, h ∈ R[X ], show how to compute their
composition g(h) ∈ R[X ] using O(len(g)2 len(h)2) operations in R.

EXERCISE 17.5. Suppose you are given three polynomials f , g, h ∈ Zp[X ],
where p is a large prime, in particular, p ≥ 2 deg(g) deg(h). Design an effi-
cient probabilistic algorithm that tests if f = g(h) (i.e., if f equals g composed
with h). Your algorithm should have the following properties: if f = g(h), it



468 Polynomial arithmetic and applications

should always output “true,” and otherwise, it should output “false” with prob-
ability at least 0.999. The expected running time of your algorithm should be
O((len(f ) + len(g) + len(h)) len(p)2).

EXERCISE 17.6. Let x, a0, . . . , a`−1 ∈ R, and let k be an integer with 0 < k ≤ `.
For i = 0, . . . , ` − k, define gi :=

∑i+k−1
j=i ajX

j ∈ R[X ]. Show how to compute the
` − k + 1 values g0(x), . . . , g`−k(x) using O(`) operations in R.

17.2 Computing minimal polynomials in F [X ]/(f ) (I)
In this section, we shall examine a computational problem to which we shall return
on several occasions, as it will serve to illustrate a number of interesting algebraic
and algorithmic concepts.

Let F be a field, and let f ∈ F [X ] be a monic polynomial of degree ` > 0. Also,
let E := F [X ]/(f ), which is an F -algebra, and in particular, an F -vector space.
As an F -vector space, E has dimension `. Suppose we are given an element α ∈ E,
and want to efficiently compute the minimal polynomial of α over F —that is, the
monic polynomial φ ∈ F [X ] of least degree such that φ(α) = 0, which we know
has degree at most ` (see §16.5).

We can solve this problem using polynomial arithmetic and Gaussian elimi-
nation, as follows. Consider the F -linear map ρ : F [X ]≤` → E that sends a
polynomial g ∈ F [X ] of degree at most ` to g(α). To perform the linear algebra,
we need to specify bases for F [X ]≤` and E. For F [X ]≤`, let us work with the basis
S := {X `+1−i}`+1

i=1 . With this choice of basis, for g =
∑`
i=0 aiX

i ∈ F [X ]≤`, the
coordinate vector of g is VecS (g) = (a`, . . . , a0) ∈ F 1×(`+1). For E, let us work
with the basis T := {ξi−1}`i=1, where ξ := [X ]f ∈ E. Let

A := MatS ,T (ρ) ∈ F (`+1)×`;

that is, A is the matrix of ρ relative to S and T (see §14.2). For i = 1, . . . , ` + 1,
the ith row of A is the coordinate vector VecT (α`+1−i) ∈ F 1×`.

We compute the matrix A by computing the powers 1, α, . . . , α`, reading off the
ith row of A directly from the canonical representative of the α`+1−i. We then
apply Gaussian elimination to A to find row vectors v1, . . . , vs ∈ F 1×(`+1) that are
coordinate vectors corresponding to a basis for the kernel of ρ. Now, the coordinate
vector of the minimal polynomial of α is a linear combination of v1, . . . , vs. To find
it, we form the s × (` + 1) matrix B whose rows consist of v1, . . . , vs, and apply
Gaussian elimination toB, obtaining an s×(`+1) matrixB′ in reduced row echelon
form whose row space is the same as that of B. Let φ be the polynomial whose
coordinate vector is the last row of B′.

Because of the choice of basis for F [X ]≤`, and because B′ is in reduced row



17.3 Euclid’s algorithm 469

echelon form, it is clear that no non-zero polynomial in Ker ρ has degree less than
that of φ. Moreover, as φ is already monic (again, by the fact that B′ is in reduced
row echelon form), it follows that φ is in fact the minimal polynomial of α over F .

The total amount of work performed by this algorithm is O(`3) operations in F
to build the matrix A (this just amounts to computing ` successive powers of α,
that is, O(`) multiplications in E, each of which takes O(`2) operations in F ), and
O(`3) operations in F to perform both Gaussian elimination steps.

17.3 Euclid’s algorithm
In this section, F denotes a field, and we consider the computation of greatest
common divisors in F [X ].

The Euclidean algorithm for integers is easily adapted to compute gcd(g, h)
for polynomials g, h ∈ F [X ]. Analogous to the integer case, we assume that
deg(g) ≥ deg(h); however, we shall also assume that g 6= 0. This is not a serious
restriction, of course, as gcd(0, 0) = 0, and making this restriction will simplify
the presentation a bit. Recall that we defined gcd(g, h) to be either zero or monic,
and the assumption that g 6= 0 means that gcd(g, h) is non-zero, and hence monic.

The following is the analog of Theorem 4.1, and is based on the division with
remainder property for polynomials.

Theorem 17.2. Let g, h ∈ F [X ], with deg(g) ≥ deg(h) and g 6= 0. Define the
polynomials r0, r1, . . . , rλ+1 ∈ F [X ] and q1, . . . , qλ ∈ F [X ], where λ ≥ 0, as
follows:

g = r0,

h = r1,

r0 = r1q1 + r2 (0 ≤ deg(r2) < deg(r1)),
...

ri−1 = riqi + ri+1 (0 ≤ deg(ri+1) < deg(ri)),
...

rλ−2 = rλ−1qλ−1 + rλ (0 ≤ deg(rλ) < deg(rλ−1)),

rλ−1 = rλqλ (rλ+1 = 0).

Note that by definition, λ = 0 if h = 0, and λ > 0 otherwise. Then we have
rλ/ lc(rλ) = gcd(g, h), and if h 6= 0, then λ ≤ deg(h) + 1.

Proof. Arguing as in the proof of Theorem 4.1, one sees that

gcd(g, h) = gcd(r0, r1) = · · · = gcd(rλ, rλ+1) = gcd(rλ, 0) = rλ/ lc(rλ).



470 Polynomial arithmetic and applications

That proves the first statement.
For the second statement, if h 6= 0, then the degree sequence

deg(r1), deg(r2), . . . , deg(rλ)

is strictly decreasing, with deg(rλ) ≥ 0, from which it follows that deg(h) =
deg(r1) ≥ λ − 1. 2

This gives us the following polynomial version of the Euclidean algorithm:

Euclid’s algorithm. On input g, h, where g, h ∈ F [X ] with deg(g) ≥ deg(h) and
g 6= 0, compute d = gcd(g, h) as follows:

r ← g, r′ ← h

while r′ 6= 0 do
r′′ ← r mod r′

(r, r′) ← (r′, r′′)
d← r/ lc(r) // make monic
output d

Theorem 17.3. Euclid’s algorithm for polynomials performs O(len(g) len(h))
operations in F .

Proof. The proof is almost identical to that of Theorem 4.2. Details are left to the
reader. 2

Just as for integers, if d = gcd(g, h), then gF [X ]+hF [X ] = dF [X ], and so there
exist polynomials s and t such that gs + ht = d. The procedure for calculating s
and t is precisely the same as in the integer case; however, in the polynomial case,
we can be much more precise about the relative sizes of the objects involved in the
calculation.

Theorem 17.4. Let g, h, r0, . . . , rλ+1 and q1, . . . , qλ be as in Theorem 17.2. Define
polynomials s0, . . . , sλ+1 ∈ F [X ] and t0, . . . , tλ+1 ∈ F [X ] as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for i = 1, . . . , λ,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

Then:

(i) for i = 0, . . . , λ + 1, we have gsi + hti = ri; in particular, gsλ + htλ =
lc(rλ) gcd(g, h);

(ii) for i = 0, . . . , λ, we have siti+1 − tisi+1 = (−1)i;



17.3 Euclid’s algorithm 471

(iii) for i = 0, . . . , λ + 1, we have gcd(si, ti) = 1;

(iv) for i = 1, . . . , λ + 1, we have

deg(ti) = deg(g) − deg(ri−1),

and for i = 2, . . . , λ + 1, we have

deg(si) = deg(h) − deg(ri−1);

(v) for i = 1, . . . , λ + 1, we have deg(ti) ≤ deg(g) and deg(si) ≤ deg(h); if
deg(g) > 0 and h 6= 0, then deg(tλ) < deg(g) and deg(sλ) < deg(h).

Proof. (i), (ii), and (iii) are proved just as in the corresponding parts of Theo-
rem 4.3.

For (iv), the proof will hinge on the following facts:

• For i = 1, . . . , λ, we have deg(ri−1) ≥ deg(ri), and since qi is the quotient
in dividing ri−1 by ri, we have deg(qi) = deg(ri−1) − deg(ri).

• For i = 2, . . . , λ, we have deg(ri−1) > deg(ri).

We prove the statement involving the ti’s by induction on i, and leave the proof
of the statement involving the si’s to the reader.

One can see by inspection that this statement holds for i = 1, since deg(t1) = 0
and r0 = g. If λ = 0, there is nothing more to prove, so assume that λ > 0 and
h 6= 0.

Now, for i = 2, we have t2 = 0 − 1 · q1 = −q1. Thus, deg(t2) = deg(q1) =
deg(r0) − deg(r1) = deg(g) − deg(r1).

Now for the induction step. Assume i ≥ 3. Then we have

deg(ti−1qi−1) = deg(ti−1) + deg(qi−1)

= deg(g) − deg(ri−2) + deg(qi−1) (by induction)

= deg(g) − deg(ri−1)

(since deg(qi−1) = deg(ri−2) − deg(ri−1))

> deg(g) − deg(ri−3) (since deg(ri−3) > deg(ri−1))

= deg(ti−2) (by induction).

By definition, ti = ti−2 − ti−1qi−1, and from the above reasoning, we see that

deg(g) − deg(ri−1) = deg(ti−1qi−1) > deg(ti−2),

from which it follows that deg(ti) = deg(g) − deg(ri−1).
(v) follows easily from (iv). 2

From this theorem, we obtain the following algorithm:



472 Polynomial arithmetic and applications

The extended Euclidean algorithm. On input g, h, where g, h ∈ F [X ] with
deg(g) ≥ deg(h) and g 6= 0, compute d, s, and t, where d, s, t ∈ F [X ], d = gcd(g, h)
and gs + ht = d, as follows:

r ← g, r′ ← h

s← 1, s′ ← 0
t← 0, t′ ← 1
while r′ 6= 0 do

compute q, r′′ such that r = r′q + r′′, with deg(r′′) < deg(r′)
(r, s, t, r′, s′, t′) ← (r′, s′, t′, r′′, s − s′q, t − t′q)

c ← lc(r)
d← r/c, s← s/c, t← t/c // make monic
output d, s, t

Theorem 17.5. The extended Euclidean algorithm for polynomials performs
O(len(g) len(h)) operations in F .

Proof. Exercise. 2

EXERCISE 17.7. State and re-work the polynomial analogs of Exercises 4.2, 4.3,
4.4, 4.5, and 4.8.

17.4 Computing modular inverses and Chinese remaindering
In this and the remaining sections of this chapter, we explore various applications
of Euclid’s algorithm for polynomials. Most of these applications are analogous
to their integer counterparts, although there are some differences to watch for.
Throughout this section, F denotes a field.

We begin with the obvious application of the extended Euclidean algorithm for
polynomials to the problem of computing multiplicative inverses in F [X ]/(f ).

Theorem 17.6. Suppose we are given polynomials f , h ∈ F [X ], where deg(h) <
deg(f ). Then using O(len(f )2) operations in F , we can determine if h is relatively
prime to f , and if so, compute h−1 mod f .

Proof. We may assume deg(f ) > 0, since deg(f ) = 0 implies h = 0 = h−1 mod f .
We run the extended Euclidean algorithm on input f , h, obtaining polynomials
d, s, t such that d = gcd(f , h) and fs + ht = d. If d 6= 1, then h does not have
a multiplicative inverse modulo f . Otherwise, if d = 1, then t is a multiplica-
tive inverse of h modulo f . Moreover, by part (v) of Theorem 17.4, we have
deg(t) < deg(f ), and so t = h−1 mod f . Based on Theorem 17.5, it is clear that
all the computations can be performed using O(len(f )2) operations in F . 2



17.4 Computing modular inverses and Chinese remaindering 473

We also observe that the Chinese remainder theorem for polynomials (Theo-
rem 16.19) can be made computationally effective as well:

Theorem 17.7 (Effective Chinese remainder theorem). Suppose we are given
polynomials f1, . . . ,fk ∈ F [X ] and g1, . . . , gk ∈ F [X ], where the family {fi}ki=1
is pairwise relatively prime, and where deg(fi) > 0 and deg(gi) < deg(fi) for
i = 1, . . . , k. Let f :=

∏k
i=1 fi. Then using O(len(f )2) operations in F , we

can compute the unique polynomial g ∈ F [X ] satisfying deg(g) < deg(f ) and
g ≡ gi (mod fi) for i = 1, . . . , k.

Proof. Exercise (just use the formulas given after Theorem 16.19). 2

Polynomial interpolation
We remind the reader of the discussion following Theorem 16.19, where the point
was made that when fi = X − xi and gi = yi, for i = 1, . . . , k, then the Chinese
remainder theorem for polynomials reduces to Lagrange interpolation. Thus, The-
orem 17.7 says that given distinct elements x1, . . . , xk ∈ F , along with elements
y1, . . . , yk ∈ F , we can compute the unique polynomial g ∈ F [X ] of degree less
than k such that

g(xi) = yi (i = 1, . . . , k),

using O(k2) operations in F .
It is perhaps worth noting that we could also solve the polynomial interpolation

problem using Gaussian elimination, by inverting the corresponding Vandermonde
matrix (see Example 14.2). However, this algorithm would use O(k3) operations
in F . This is a specific instance of a more general phenomenon: there are many
computational problems involving polynomials over fields that can be solved using
Gaussian elimination, but which can be solved more efficiently using more special-
ized algorithmic techniques.

Speeding up algorithms via modular computation
In §4.4, we discussed how the Chinese remainder theorem could be used to speed
up certain types of computations involving integers. The example we gave was the
multiplication of integer matrices. We can use the same idea to speed up certain
types of computations involving polynomials. For example, if one wants to mul-
tiply two matrices whose entries are elements of F [X ], one can use the Chinese
remainder theorem for polynomials to speed things up. This strategy is most easily
implemented if F is sufficiently large, so that we can use polynomial evaluation



474 Polynomial arithmetic and applications

and interpolation directly, and do not have to worry about constructing irreducible
polynomials.

EXERCISE 17.8. Adapt the algorithms of Exercises 4.14 and 4.15 to obtain an
algorithm for polynomial interpolation. This algorithm is called Newton interpo-
lation.

17.5 Rational function reconstruction and applications
Throughout this section, F denotes a field.

We next state and prove the polynomial analog of Theorem 4.9. As we are
now “reconstituting” a rational function, rather than a rational number, we call this
procedure rational function reconstruction. Because of the relative simplicity of
polynomials compared to integers, the rational reconstruction theorem for polyno-
mials is a bit “sharper” than the rational reconstruction theorem for integers, and
much simpler to prove.

To state the result precisely, let us introduce some notation. For polynomials
g, h ∈ F [X ] with deg(g) ≥ deg(h) and g 6= 0, let us define

EEA(g, h) :=
{

(ri, si, ti)
}λ+1
i=0 ,

where ri, si, and ti, for i = 0, . . . , λ + 1, are defined as in Theorem 17.4.

Theorem 17.8 (Rational function reconstruction). Let f , h ∈ F [X ] be polyno-
mials, and let r∗, t∗ be non-negative integers, such that

deg(h) < deg(f ) and r∗ + t∗ ≤ deg(f ).

Further, let EEA(f , h) = {(ri, si, ti)}λ+1
i=0 , and let j be the smallest index (among

0, . . . , λ + 1) such that deg(rj) < r∗, and set

r′ := rj, s′ := sj, and t′ := tj.

Finally, suppose that there exist polynomials r, s, t ∈ F [X ] such that

r = fs + ht, deg(r) < r∗, and 0 ≤ deg(t) ≤ t∗.

Then for some non-zero polynomial q ∈ F [X ], we have

r = r′q, s = s′q, t = t′q.

Proof. Since deg(r0) = deg(f ) ≥ r∗ > −∞ = deg(rλ+1), the value of j is well
defined, and moreover, j ≥ 1, deg(rj−1) ≥ r∗, and tj 6= 0.



17.5 Rational function reconstruction and applications 475

From the equalities rj = fsj+htj and r = fs+ht, we have the two congruences:

rj ≡ htj (mod f ),

r ≡ ht (mod f ).

Subtracting t times the first from tj times the second, we obtain

rtj ≡ rjt (mod f ).

This says that f divides rtj − rjt.
We want to show that, in fact, rtj − rjt = 0. To this end, first observe that by part

(iv) of Theorem 17.4 and the inequality deg(rj−1) ≥ r∗, we have

deg(tj) = deg(f ) − deg(rj−1) ≤ deg(f ) − r∗.

Combining this with the inequality deg(r) < r∗, we see that

deg(rtj) = deg(r) + deg(tj) < deg(f ).

Furthermore, using the inequalities

deg(rj) < r∗, deg(t) ≤ t∗, and r∗ + t∗ ≤ deg(f ),

we see that

deg(rjt) = deg(rj) + deg(t) < deg(f ),

and it immediately follows that

deg(rtj − rjt) < deg(f ).

Since f divides rtj − rjt and deg(rtj − rjt) < deg(f ), the only possibility is that

rtj − rjt = 0.

The rest of the proof follows exactly the same line of reasoning as in the last
paragraph in the proof of Theorem 4.9, as the reader may easily verify. 2

17.5.1 Application: recovering rational functions from their reversed Laurent
series

We now discuss the polynomial analog of the application in §4.6.1. This is an
entirely straightforward translation of the results in §4.6.1, but we shall see in the
next chapter that this problem has its own interesting applications.

Suppose Alice knows a rational function z = s/t ∈ F (X ), where s and t are
polynomials with deg(s) < deg(t), and tells Bob some of the high-order coeffi-
cients of the reversed Laurent series (see §16.8) representing z in F ((X−1)). We
shall show that if deg(t) ≤ ` and Bob is given the bound ` on deg(t), along with the



476 Polynomial arithmetic and applications

high-order 2` coefficients of z, then Bob can determine z, expressed as a rational
function in lowest terms.

So suppose that z = s/t =
∑∞
i=1 ziX

−i, and that Alice tells Bob the coefficients
z1, . . . , z2`. Equivalently, Alice gives Bob the polynomial

h := z1X
2`−1 + · · · + z2`−1X + z2`.

Also, let us define f := X 2`. Here is Bob’s algorithm for recovering z:

1. Run the extended Euclidean algorithm on input f , h to obtain EEA(f , h),
and apply Theorem 17.8 with f , h, r∗ := `, and t∗ := `, to obtain the
polynomials r′, s′, t′.

2. Output s′, t′.

We claim that z = −s′/t′. To prove this, first observe that h = bfzc = bfs/tc
(see Theorem 16.32). So if we set r := fs mod t, then we have

r = fs − ht, deg(r) < r∗, 0 ≤ deg(t) ≤ t∗, and r∗ + t∗ ≤ deg(f ).

It follows that the polynomials s′, t′ from Theorem 17.8 satisfy s = s′q and −t = t′q

for some non-zero polynomial q, and thus, s′/t′ = −s/t, which proves the claim.
We may further observe that since the extended Euclidean algorithm guarantees

that gcd(s′, t′) = 1, not only do we obtain z, but we obtain z expressed as a fraction
in lowest terms.

It is clear that this algorithm takes O(`2) operations in F .

17.5.2 Application: polynomial interpolation with errors
We now discuss the polynomial analog of the application in §4.6.2.

If we “encode” a polynomial g ∈ F [X ], with deg(g) < k, as the sequence
(y1, . . . , yk) ∈ F×k, where yi = g(xi), then we can efficiently recover g from this
encoding, using an algorithm for polynomial interpolation. Here, of course, the
xi’s are distinct elements of F .

Now suppose that Alice encodes g as (y1, . . . , yk), and sends this encoding to
Bob, but that some, say at most `, of the yi’s may be corrupted during transmission.
Let (z1, . . . , zk) denote the vector actually received by Bob.

Here is how we can use Theorem 17.8 to recover the original value of g from
(z1, . . . , zk), assuming:

• the original polynomial g has degree less than m,

• at most ` errors occur in transmission, and

• k ≥ 2` + m.

Let us set fi := X − xi for i = 1, . . . , k, and f := f1 · · · fk. Now, suppose Bob
obtains the corrupted encoding (z1, . . . , zk). Here is what Bob does to recover g:



17.5 Rational function reconstruction and applications 477

1. Interpolate, obtaining a polynomial h, with deg(h) < k and h(xi) = zi for
i = 1, . . . , k.

2. Run the extended Euclidean algorithm on input f , h to obtain EEA(f , h),
and apply Theorem 17.8 with f , h, r∗ := m + ` and t∗ := `, to obtain the
polynomials r′, s′, t′.

3. If t′ | r′, output r′/t′; otherwise, output “error.”

We claim that the above procedure outputs g, under the assumptions listed above.
To see this, let t be the product of the fi’s for those values of i where an error
occurred. Now, assuming at most ` errors occurred, we have deg(t) ≤ `. Also, let
r := gt, and note that deg(r) < m + `. We claim that

r ≡ ht (mod f ). (17.1)

To show that (17.1) holds, it suffices to show that

gt ≡ ht (mod fi) (17.2)

for all i = 1, . . . , k. To show this, consider first an index i at which no error
occurred, so that yi = zi. Then gt ≡ yit (mod fi) and ht ≡ zit ≡ yit (mod fi), and
so (17.2) holds for this i. Next, consider an index i for which an error occurred.
Then by construction, gt ≡ 0 (mod fi) and ht ≡ 0 (mod fi), and so (17.2) holds
for this i. Thus, (17.1) holds, from which it follows that the values r′, t′ obtained
from Theorem 17.8 satisfy

r′

t′
=
r

t
=
gt

t
= g.

One easily checks that both the procedures to encode and decode a value g run in
time O(k2). The above scheme is an example of an error correcting code called
a Reed–Solomon code.

17.5.3 Applications to symbolic algebra
Rational function reconstruction has applications in symbolic algebra, analogous
to those discussed in §4.6.3. In that section, we discussed the application of solv-
ing systems of linear equations over the integers using rational reconstruction. In
exactly the same way, one can use rational function reconstruction to solve systems
of linear equations over F [X ]—the solution to such a system of equations will be
a vector whose entries are elements of F (X ), the field of rational functions.

EXERCISE 17.9. Consider again the secret sharing problem, as discussed in Exam-
ple 8.28. There, we presented a scheme that distributes shares of a secret among
several parties in such a way that no coalition of k or fewer parties can reconstruct



478 Polynomial arithmetic and applications

the secret, while every coalition of k+1 parties can. Now suppose that some parties
may be corrupt: in the protocol to reconstruct the secret, a corrupted party may
contribute an incorrect share. Show how to modify the protocol in Example 8.28
so that if shares are distributed among several parties, then

(a) no coalition of k or fewer parties can reconstruct the secret, and

(b) if at most k parties are corrupt, then every coalition of 3k+1 parties (which
may include some of the corrupted parties) can correctly reconstruct the
secret.

The following exercises are the polynomial analogs of Exercises 4.20, 4.22, and
4.23.

EXERCISE 17.10. Let F be a field. Show that given polynomials s, t ∈ F [X ] and
integer k, with deg(s) < deg(t) and k > 0, we can compute the kth coefficient in
the reversed Laurent series representing s/t using O(len(k) len(t)2) operations in
F .

EXERCISE 17.11. Let F be a field. Let z ∈ F ((X−1)) be a reversed Laurent series
whose coefficient sequence is ultimately periodic. Show that z ∈ F (X ).

EXERCISE 17.12. Let F be a field. Let z= s/t, where s, t ∈F [X ], deg(s) < deg(t),
and gcd(s, t) = 1.

(a) Show that if F is finite, there exist integers k, k′ such that 0 ≤ k < k′ and
sX k ≡ sX k′ (mod t).

(b) Show that for integers k, k′ with 0 ≤ k < k′, the sequence of coefficients of
the reversed Laurent series representing z is (k, k′−k)-periodic if and only
if sX k ≡ sX k′ (mod t).

(c) Show that if F is finite and X - t, then the reversed Laurent series repre-
senting z is purely periodic with period equal to the multiplicative order of
[X ]t ∈ (F [X ]/(t))∗.

(d) More generally, show that if F is finite and t = X kt′, with X - t′, then the
reversed Laurent series representing z is ultimately periodic with pre-period
k and period equal to the multiplicative order of [X ]t′ ∈ (F [X ]/(t′))∗.

17.6 Faster polynomial arithmetic (∗)
The algorithms discussed in §3.5 for faster integer arithmetic are easily adapted to
polynomials over a ring. Throughout this section, R denotes a non-trivial ring.

EXERCISE 17.13. State and re-work the analog of Exercise 3.41 for R[X ]. Your



17.6 Faster polynomial arithmetic (∗) 479

algorithm should multiply two polynomials over R of length at most ` using
O(`log2 3) operations in R.

It is in fact possible to multiply polynomials over R of length at most ` using
O(` len(`) len(len(`))) operations in R— we shall develop some of the ideas that
lead to such a result below in Exercises 17.21–17.24 (see also the discussion in
§17.7).

In Exercises 17.14–17.19 below, assume that we have an algorithm that multi-
plies two polynomials over R of length at most ` using at most M (`) operations in
R, where M is a well-behaved complexity function (as defined in §3.5).

EXERCISE 17.14. State and re-work the analog of Exercises 3.46 and 3.47 for
R[X ].

EXERCISE 17.15. This problem is the analog of Exercise 3.48 for R[X ]. Let
us first define the notion of a “floating point” reversed Laurent series ẑ, which
is represented as a pair (g, e), where g ∈ R[X ] and e ∈ Z — the value of ẑ is
gX e ∈ R((X−1)), and we call len(g) the precision of ẑ. We say that ẑ is a length
k approximation of z ∈ R((X−1)) if ẑ has precision k and ẑ = (1 + ε)z for
ε ∈ R((X−1)) with deg(ε) ≤ −k, which is the same as saying that the high-order k
coefficients of ẑ and z are equal. Show that given h ∈ R[X ] with lc(h) ∈ R∗, and
positive integer k, we can compute a length k approximation of 1/h ∈ R((X−1))
using O(M (k)) operations in R. Hint: using Newton iteration, show how to go
from a length t approximation of 1/h to a length 2t approximation, making use of
just the high-order 2t coefficients of h, and using O(M (t)) operations in R.

EXERCISE 17.16. State and re-work the analog of Exercise 3.49 for R[X ].

EXERCISE 17.17. State and re-work the analog of Exercise 3.50 for R[X ]. Con-
clude that a polynomial of length at most k can be evaluated at k points using
O(M (k) len(k)) operations in R.

EXERCISE 17.18. State and re-work the analog of Exercise 3.52 for R[X ], assum-
ing 2R ∈ R∗.

The next two exercises develop a useful technique known as Kronecker substi-
tution.

EXERCISE 17.19. Let g, h ∈ R[X ,Y ] with g =
∑m−1
i=0 giY

i and h =
∑m−1
i=0 hiY

i,
where each gi and hi is a polynomial in X of degree less than k. The product
f := gh ∈ R[X ,Y ] may be written f =

∑2m−2
i=0 fiY

i, where each fi is a polynomial
in X . Show how to compute f , given g and h, using O(M (km)) operations in R.
Hint: for an appropriately chosen integer t > 0, first convert g, h to g̃, h̃ ∈ R[X ],



480 Polynomial arithmetic and applications

where g̃ :=
∑m−1
i=0 giX

ti and h̃ :=
∑m−1
i=0 hiX

ti; next, compute f̃ := g̃h̃ ∈ R[X ];
finally, “read off” the fi’s from the coefficients of f̃ .

EXERCISE 17.20. Assume that integers of length at most ` can be multiplied in
time M (`), where M is a well-behaved complexity function. Let g, h ∈ Z[X ] with
g =

∑m−1
i=0 aiX

i and h =
∑m−1
i=0 biX

i, where each ai and bi is a non-negative integer,
strictly less than 2k. The product f := gh ∈ Z[X ] may be written f =

∑2m−2
i=0 ciX

i,
where each ci is a non-negative integer. Show how to compute f , given g and h,
using O(M ((k + len(m))m)) operations in R. Hint: for an appropriately cho-
sen integer t > 0, first convert g, h to a, b ∈ Z, where a :=

∑m−1
i=0 ai2

ti and
b :=

∑m−1
i=0 bi2

ti; next, compute c := ab ∈ Z; finally, “read off” the ci’s from
the bits of c.

The following exercises develop an important algorithm for multiplying polyno-
mials in almost-linear time. For an integer n ≥ 0, let us call ω ∈ R a primitive
2nth root of unity if n ≥ 1 and ω2n−1

= −1R, or n = 0 and ω = 1R; if 2R 6= 0R,
then in particular, ω has multiplicative order 2n. For n ≥ 0, and ω ∈ R a prim-
itive 2nth root of unity, let us define the R-linear map En,ω : R×2n → R×2n that
sends the vector (a0, . . . , a2n−1) to the vector (g(1R), g(ω), . . . , g(ω2n−1)), where
g :=

∑2n−1
i=0 aiX

i ∈ R[X ].

EXERCISE 17.21. Suppose 2R ∈ R∗ and ω ∈ R is a primitive 2nth root of unity.

(a) Let k be any integer, and consider gcd(k, 2n), which must be of the form
2m for some m = 0, . . . , n. Show that ωk is a primitive 2n−mth root of unity.

(b) Show that if n ≥ 1, then ω − 1R ∈ R∗.
(c) Show that ωk − 1R ∈ R∗ for all integers k 6≡ 0 (mod 2n).

(d) Show that for every integer k, we have

2n−1
∑

i=0

ωki =
{

2nR if k ≡ 0 (mod 2n),
0R if k 6≡ 0 (mod 2n).

(e) Let M2 be the 2-multiplication map on R×2n , which is a bijective, R-linear
map. Show that

En,ω ◦ En,ω−1 =Mn
2 = En,ω−1 ◦ En,ω,

and conclude that En,ω is bijective, withM−n
2 ◦En,ω−1 being its inverse. Hint:

write down the matrices representing the maps En,ω and En,ω−1 .

EXERCISE 17.22. This exercise develops a fast algorithm, called the fast Fourier
transform or FFT, for computing the function En,ω. This is a recursive algorithm



17.6 Faster polynomial arithmetic (∗) 481

FFT(n,ω; a0, . . . , a2n−1) that takes as input an integer n ≥ 0, a primitive 2nth root
of unity ω ∈ R, and elements a0, . . . , a2n−1 ∈ R, and runs as follows:

if n = 0 then
return a0

else
(α0, . . . , α2n−1−1) ← FFT(n − 1,ω2; a0, a2, . . . , a2n−2)
(β0, . . . , β2n−1−1) ← FFT(n − 1,ω2; a1, a3, . . . , a2n−1)
for i← 0 to 2n−1 − 1 do

γi ← αi + βiωi, γi+2n−1 ← αi − βiωi
return (γ0, . . . , γ2n−1)

Show that this algorithm correctly computes En,ω(a0, . . . , a2n−1) usingO(2nn) oper-
ations in R.

EXERCISE 17.23. Assume 2R ∈ R∗. Suppose that we are given two polyno-
mials g, h ∈ R[X ] of length at most `, along with a primitive 2nth root of unity
ω ∈ R, where 2` ≤ 2n < 4`. Let us “pad” g and h, writing g =

∑2n−1
i=0 aiX

i

and h =
∑2n−1
i=0 biX

i, where ai and bi are zero for i ≥ `. Show that the following
algorithm correctly computes the product of g and h using O(` len(`)) operations
in R:

(α0, . . . , α2n−1) ← FFT(n,ω; a0, . . . , a2n−1)
(β0, . . . , β2n−1) ← FFT(n,ω; b0, . . . , b2n−1)
(γ0, . . . , γ2n−1) ← (α0β0, . . . , α2n−1β2n−1)
(c0, . . . , c2n−1) ← 2−nR FFT(n,ω−1; γ0, . . . , γ2n−1)
output

∑2`−2
i=0 ciX

i

Also, argue more carefully that the algorithm performs O(` len(`)) additions and
subtractions in R, O(` len(`)) multiplications in R by powers of ω, and O(`) other
multiplications in R.

EXERCISE 17.24. Assume 2R ∈ R∗. In this exercise, we use the FFT to develop an
algorithm that multiplies polynomials overR of length at most ` usingO(` len(`)β )
operations in R, where β is a constant. Unlike the previous exercise, we do not
assume that R contains any particular primitive roots of unity; rather, the algo-
rithm will create them “out of thin air.” Suppose that g, h ∈ R[X ] are of length
at most `. Set k := b

√

`/2c, m := d`/ke. We may write g =
∑m−1
i=0 giX

ki and
h =

∑m−1
i=0 hiX

ki, where the gi’s and hi’s are polynomials of length at most k. Let
n be the integer determined by 2m ≤ 2n < 4m. Let q := X 2n−1

+ 1R ∈ R[X ],
E := R[X ]/(q), and ω := [X ]q ∈ E.

(a) Show that ω is a primitive 2nth root of unity in E, and that given an element



482 Polynomial arithmetic and applications

ζ ∈ E and an integer i between 0 and 2n − 1, we can compute ζωi ∈ E
using O(`1/2) operations in R.

(b) Let g :=
∑m−1
i=0 [gi]qY i ∈ E[Y ] and h :=

∑m−1
i=0 [hi]qY i ∈ E[Y ]. Using

the FFT (over E), show how to compute f := gh ∈ E[Y ] by computing
O(`1/2) products in R[X ] of polynomials of length O(`1/2), along with
O(` len(`)) additional operations in R.

(c) Show how to compute the coefficients of f := gh ∈ R[X ] from the value
f ∈ E[Y ] computed in part (b), using O(`) operations in R.

(d) Based on parts (a)–(c), we obtain a recursive multiplication algorithm: on
inputs of length at most `, it performs at most α0` len(`) operations in R,
and calls itself recursively on at most α1`

1/2 subproblems, each of length
at most α2`

1/2; here, α0, α1 and α2 are constants. If we just perform one
level of recursion, and immediately switch to a quadratic multiplication
algorithm, we obtain an algorithm whose operation count is O(`1.5). If we
perform two levels of recursion, this is reduced to O(`1.25). For practical
purposes, this is probably enough; however, to get an asymptotically better
complexity bound, we can let the algorithm recurse all the way down to
inputs of some (appropriately chosen) constant length. Show that if we do
this, the operation count of the recursive algorithm is O(` len(`)β ) for some
constant β (whose value depends on α1 and α2).

The approach used in the previous exercise was a bit sloppy. With a bit more
care, one can use the same ideas to get an algorithm that multiplies polynomials
over R of length at most ` using O(` len(`) len(len(`))) operations in R, assuming
2R ∈ R∗. The next exercise applies similar ideas, but with a few twists, to the
problem of integer multiplication.

EXERCISE 17.25. This exercise uses the FFT to develop a linear-time algorithm
for integer multiplication; however, a rigorous analysis depends on an unproven
conjecture (which follows from a generalization of the Riemann hypothesis). Sup-
pose we want to multiply two positive integers a and b, each of length at most `
(represented internally using the data structure described in §3.3). Throughout this
exercise, assume that all computations are done on a RAM, and that arithmetic
on integers of length O(len(`)) takes time O(1). Let k be an integer parameter
with k = Θ(len(`)), and let m := d`/ke. We may write a =

∑m−1
i=0 ai2

ki and
b =

∑m−1
i=0 bi2

ki, where 0 ≤ ai < 2k and 0 ≤ bi < 2k. Let n be the integer
determined by 2m ≤ 2n < 4m.

(a) Assuming Conjecture 5.22, and assuming a deterministic, polynomial-time
primality test (such as the one to be presented in Chapter 21), show how
to efficiently generate a prime p ≡ 1 (mod 2n) and an element ω ∈ Z∗p of



17.6 Faster polynomial arithmetic (∗) 483

multiplicative order 2n, such that

22km < p ≤ `O(1).

Your algorithm should be probabilistic, and run in expected time polyno-
mial in len(`).

(b) Assuming you have computed p and ω as in part (a), let g :=
∑m−1
i=0 [ai]pX i ∈

Zp[X ] and h :=
∑m−1
i=0 [bi]pX i ∈ Zp[X ], and show how to compute f := gh ∈

Zp[X ] in time O(`) using the FFT (over Zp). Here, you may store elements
of Zp in single memory cells, so that operations in Zp take time O(1).

(c) Assuming you have computed f ∈ Zp[X ] as in part (b), show how to obtain
c := ab in time O(`).

(d) Conclude that assuming Conjecture 5.22, we can multiply two integers of
length at most ` on a RAM in time O(`).

Note that even if one objects to our accounting practices, and insists on charging
O(len(`)2) time units for arithmetic on numbers of length O(len(`)), the algorithm
in the previous exercise runs in time O(` len(`)2), which is “almost” linear time.

EXERCISE 17.26. Continuing with the previous exercise:

(a) Show how the algorithm presented there can be implemented on a RAM
that has only built-in addition, subtraction, and branching instructions, but
no multiplication or division instructions, and still run in time O(`). Also,
memory cells should store numbers of length at most len(`) + O(1). Hint:
represent elements of Zp as sequences of base-2t digits, where t ≈ α len(`)
for some constant α < 1; use table lookup to multiply t-bit numbers, and to
perform 2t-by-t-bit divisions—for α sufficiently small, you can build these
tables in time o(`).

(b) Using Theorem 5.23, show how to make this algorithm fully deterministic
and rigorous, assuming that on inputs of length `, it is provided with a
certain bit string σ` of length O(len(`)) (this is called a non-uniform algo-
rithm).

EXERCISE 17.27. This exercise shows how the algorithm in Exercise 17.25 can
be made quite concrete, and fairly practical, as well.

(a) The number p := 25927 + 1 is a 64-bit prime. Show how to use this value
of p in conjunction with the algorithm in Exercise 17.25 with k = 20 and
any value of ` up to 227.

(b) The numbers p1 := 2303 + 1, p2 := 22813 + 1, and p3 := 22729 + 1 are 32-
bit primes. Show how to use the Chinese remainder theorem to modify the
algorithm in Exercise 17.25, so that it uses the three primes p1, p2, p3, and



484 Polynomial arithmetic and applications

so that it works with k = 32 and any value of ` up to 231. This variant may
be quite practical on a 32-bit machine with built-in instructions for 32-bit
multiplication and 64-by-32-bit division.

The previous three exercises indicate that we can multiply integers in essentially
linear time, both in theory and in practice. As mentioned in §3.6, there is a differ-
ent, fully deterministic and rigorously analyzed algorithm that multiplies integers
in linear time on a RAM. In fact, that algorithm works on a very restricted type
of machine called a “pointer machine,” which can be simulated in “real time” on
a RAM with a very restricted instruction set (including the type in the previous
exercise). That algorithm works with finite approximations to complex roots of
unity, rather than roots of unity in a finite field.

We close this section with a cute application of fast polynomial multiplication to
the problem of factoring integers.

EXERCISE 17.28. Let n be a large, positive integer. We can factor n using trial
division in time n1/2+o(1); however, using fast polynomial arithmetic in Zn[X ],
one can get a simple, deterministic, and rigorous algorithm that factors n in time
n1/4+o(1). Note that all of the factoring algorithms discussed in Chapter 15, while
faster, are either probabilistic, or deterministic but heuristic. Assume that we can
multiply polynomials in Zn[X ] of length at most ` using M (`) operations in Zn,
where M is a well-behaved complexity function, and M (`) = `1+o(1) (the algo-
rithm from Exercise 17.24 would suffice).

(a) Let ` be a positive integer, and for i = 1, . . . , `, let

ai :=
`−1
∏

j=0

(i` − j) mod n.

Using fast polynomial arithmetic, show how to compute (a1, . . . , a`) in time
`1+o(1) len(n)O(1).

(b) Using the result of part (a), show how to factor n in time n1/4+o(1) using a
deterministic algorithm.

17.7 Notes
Reed–Solomon codes were first proposed by Reed and Solomon [81], although the
decoder presented here was developed later. Theorem 17.8 was proved by Mills
[68]. The Reed–Solomon code is just one way of detecting and correcting errors—
we have barely scratched the surface of this subject.

Just as in the case of integer arithmetic, the basic “pencil and paper” quadratic-
time algorithms discussed in this chapter for polynomial arithmetic are not the best



17.7 Notes 485

possible. The fastest known algorithms for multiplication of polynomials of length
at most ` over a ring R take O(` len(`) len(len(`))) operations in R. These algo-
rithms are all variations on the basic FFT algorithm (see Exercise 17.23), but work
without assuming that 2R ∈ R∗ or that R contains any particular primitive roots
of unity (we developed some of the ideas in Exercise 17.24). The Euclidean and
extended Euclidean algorithms for polynomials over a field F can be implemented
so as to take O(` len(`)2 len(len(`))) operations in F , as can the algorithms for
Chinese remaindering and rational function reconstruction. See the book by von
zur Gathen and Gerhard [39] for details (as well for an analysis of the Euclidean
algorithm for polynomials over the field of rational numbers and over function
fields). Depending on the setting and many implementation details, such asymptot-
ically fast algorithms for multiplication and division can be significantly faster than
the quadratic-time algorithms, even for quite moderately sized inputs of practical
interest. However, the fast Euclidean algorithms are only useful for significantly
larger inputs.

Exercise 17.3 is based on an algorithm of Brent and Kung [20]. Using fast
matrix and polynomial arithmetic, Brent and Kung show how to solve the modular
composition problem using O(`(ω+1)/2) operations in R, where ω is the exponent
for matrix multiplication (see §14.6), and so (ω+1)/2 < 1.7. Modular composition
arises as a subproblem in a number of algorithms.†

† Very recently, faster algorithms for modular composition have been discovered. See the papers by C. Umans
[Fast polynomial factorization and modular composition in small characteristic, to appear in 40th Annual
ACM Symposium on Theory of Computing, 2008] and K. Kedlaya and C. Umans [Fast modular composition in
any characteristic, manuscript, April 2008], both of which are available at www.cs.caltech.edu/~umans/
research.

http://www.cs.caltech.edu/~umans/research
http://www.cs.caltech.edu/~umans/research

